Phase transformation of mixed-phase clouds

نویسنده

  • ALEXEI KOROLEV
چکیده

The glaciation time of a mixed-phase cloud due to the Wegener–Bergeron–Findeisen mechanism is calculated using an adiabatic one-dimensional numerical model for the cases of zero, ascending, descending and oscillating vertical velocities. The characteristic values of the glaciation time are obtained for different concentrations of ice particles and liquid-water content. Steady state is not possible for the ice-water content/total water content ratio in a uniformly vertically moving mixed-phase parcel. The vertical oscillation of a cloud parcel may result in a periodic evaporation and activation of liquid droplets in the presence of ice particles during inŽ nite time. After a certain time, the average ice-water content and liquid-water content reach a steady state. This phenomenon may explain the existence of long-lived mixed-phase stratiform layers. The obtained results are important for understanding the mechanisms of formation and life cycle of mixed-phase clouds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Numerical Study of Dynamic Detonability Characteristics of Two-phase Unconfined Fuel-Air Clouds

A numerical simulation has been carried out to study the detonability characteristics of two- phase unconfined clouds. The parameters equivalence ratio, turbulence, shape, volume and uniformity of the cloud and the delay time distribution are recognized and introduced as the most important factors determining the reactivity of the cloud and influencing the initiation of a successful detonation....

متن کامل

Evaluation of Mixed-Phase Cloud Parameterizations in Short-Range Weather Forecasts with CAM3 and AM2 for Mixed-Phase Arctic Cloud Experiment

Mixed-phase clouds dominate low-level Arctic clouds in cold seasons and have a significant impact on the surface energy budget. However, the treatment of mixed-phase clouds in most current climate models is crude because the detailed microphysical processes involved in mixed-phase clouds are not completely understood, primarily owe to the paucity of cloud observations in the past. Improving mix...

متن کامل

Evaluation of Mixed-Phase Cloud Parametrizations in Short-Range Weather Forecasts with CAM3 and AM2 for Mixed-Phase Arctic Cloud Experiment

Mixed-phase clouds dominate low-level Arctic clouds in cold seasons and have a significant impact on the surface energy budget. However, the treatment of mixed-phase clouds in most current climate models is crude because the detailed microphysical processes involved in mixed-phase clouds are not completely understood, primarily owe to the paucity of cloud observations in the past. Improving mix...

متن کامل

Limitations of the Wegener–Bergeron–Findeisen Mechanism in the Evolution of Mixed-Phase Clouds

Phase transformation and precipitation formation in mixed-phase clouds are usually associated with the Wegener–Bergeron–Findeisen (WBF) process in which ice crystals grow at the expense of liquid droplets. The evolution of mixed-phase clouds, however, is closely related to local thermodynamical conditions, and the WBF process is just one of three possible scenarios. The other two scenarios invo...

متن کامل

A Numerical Study of Dynamic Detonability Characteristics of Two-phase Unconfined Fuel-Air Clouds

A numerical simulation has been carried out to study the detonability characteristics of two- phase unconfined clouds. The parameters equivalence ratio, turbulence, shape, volume and uniformity of the cloud and the delay time distribution are recognized and introduced as the most important factors determining the reactivity of the cloud and influencing the initiation of a successful detonation....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006